
Mutation-based Modular Decomposition of Deep
Neural Networks

Tra Reynolds
Department of Computer Science and Software Engineering

Auburn University
Auburn, United States of America

trr0026@auburn.edu

Ali Ghanbari
Department of Computer Science and Software Engineering

Auburn University
Auburn, United States of America

ghanbari@auburn.edu

Abstract—Prior to deep neural networks (DNNs), the de-
composition of software has been an established method of
replacement of insufficient programming and reuse of efficient
code. Modularization of DNNs, however, is a less prominent
area of study due to its increased complexity. Changes to DNNs,
therefore, are difficult to implement. After alterations, DNNs are
required to go through extended periods of retraining to produce
a functional program once again. This paper seeks techniques of
DNN modularization and the production of methods to modify
DNNs without the need for arduous retraining.

Index Terms—deep learning, deep neural networks, machine
learning, mutation analysis, modularization

I. INTRODUCTION

As machine learning becomes increasingly more important
in society, so does the need for ways to further develop
the medium. After all, machine learning is expensive, both
monetarily and computationally. Moreover, the developmental
process is long and arduous, with the mere derivation of
an innovative idea being only the start. The most rigorous
element in machine learning algorithms, often built using deep
neural networks (DNNs), is its physical formation. As a DNN
begins taking shape, it must go through an extended period of
testing and retesting. In order to create an adequate model, this
training must cover large datasets, taking up resources perhaps
only to underperform in some areas and need to be entirely
retrained.

This is where modular decomposition becomes a necessity.
The ability to reuse and replace existing, trained DNN modules
proves invaluable in creating new DNN models. By separating
a DNN into segmented modules capable of a specialized
task, one could combine several of these DNN modules to
develop a DNN with the ability to perform multiple tasks.
Most importantly, this new DNN model would not have to
go through retraining to function effectively. In pursuit of this
objective, some methods have been proposed, mainly those
that attempt to compartmentalize DNN modules after training.
Considering these methods, we developed a system of DNN
decomposition using mutation analysis inside Python.

Mutation analysis is a white-box testing method often used
in testing for errors, only recently being used to train artificial
intelligence models. The procedure involves the randomized
altering of elements within the object of testing. The resulting

altered models, or mutants, are analyzed and graded on their
performance. Those that demonstrate acceptable proficiency
are allowed to mutate further, while those that do not are
discarded. When it comes to DNN decomposition, the method-
ology is similar. In this instance, the neurons within the layers
of the DNN are being mutated, allowing for a detailed analysis
of the impact these individual neurons have on the output and
producing a metric that can be used to decide how to sever
them into DNN modules [4].

Before beginning modularization, it is important to define
the metrics that are indicators of a successful DNN decompo-
sition. One of those metrics is accuracy. No program is perfect,
and as such, no program will always be accurate. When
decomposing a DNN model, it is imperative to minimize loss
of accuracy. Two other methods are cohesion and coupling,
which are related. Cohesion is the overlap of weights within
modules, and coupling is the overlap of weights between
modules. The goal during modularization, thus, is to maximize
cohesion and minimize coupling. Therefore, a highly cohesive,
hardly coupled DNN module that retains the accuracy of
the original monolithic DNN model is the objective when
decomposing into DNN modules [3].

II. RELATED WORK

While researching DNN decomposition, it became appar-
ent that methods of modularization after training followed a
similar sequence [1], [2]. This sequence is as followed:

A. Concern Identification (CI)

For the first step, concern identification (CI) involves dis-
cerning which neurons contribute to a given output. Large
DNN models, particularly those that can produce many pos-
sible outputs, will have neurons that contribute to multiple
outputs. Neurons that behave in this manner will be assigned
to the output they most contribute to and later pruned from
the outputs it does not.

It is worth mentioning that the removal of too many neurons
can cause a neural network to be too sparsely connected,
possibly resulting in decreased accuracy and/or processing
speed [1]. Therefore, it is important to set a limit on the
amount of neurons that can be removed from the developing
DNN module.

B. Tangling Identification (TI)

Though the proceeding DNN module now only contains
neurons that have an impact on a given output, a problem
arises from its overspecialization. As the DNN module be-
comes more specialized, it also becomes more predisposed
towards a given output. This output is favored regardless of
the input [1]. To avoid this outcome, it is important to add
back in some of the less relevant neurons. The neurons added
back into the module need to be a mix of those that still
contained some level of contribution to the desired output and
those that did not. This procedure allows for the DNN module
to have some method of determining an output that is counter
to the output the majority of the neurons most contribute to
identifying [1].

C. Concern Modularization (CM)

This final step is where modularization occurs. To do so,
the neurons that do not contribute to the positive result within
the last hidden DNN layer are removed. The noncontributing
neurons in the output layer are then abstracted. This technique
is known as channeling and concludes the modularization of
a DNN model [1].

D. Special Case: CNN Models

The concern modularization step, however, is not the same
for all DNN models. There are DNN models that require a
different sequence of steps due to their increased complexity,
most notably convolutional neural networks (CNNs). CNN
models are a type of deep neural network that is most
associated with image classification. For example, a DNN
model that identifies the presence of something within an
image would most likely be a trained CNN model. To de-
compose a CNN model, to start, a channeling technique is
used, like previously described. Then, the process backtracks
through the contributing and noncontributing neurons in the
previous layers, removing the neurons that only participate in
identifying the noncontributing output. Backtracking through
the convolution layer, however, is not feasible because in a
convolution layer, the inputs cannot be directly mapped with
the outputs. To remove irrelevant neurons from the convolution
layer, we store the position of the neurons in each sliding
window (which is a segment of an image that is currently being
analyzed) with the neurons in the output during the forward
pass, and remove the neurons during the backward pass [2].
The product is a decomposed CNN model.

E. Special Case: Modularizing while Training

While researching methods of the modularization of DNN
models, a unique technique was found. Rather than attempting
to decompose a trained DNN model, this method shows that a
DNN model can be trained to easily decompose later. This
process is done by training the DNN model to have high
cohesion and low coupling while training it to have a certain
functionality [3].

Just like in modularization after training, modularization
while training starts with finding the contributing neurons to

the desired output. This process is similar to the way previ-
ously described. The next step is the evaluation of cohesion
and coupling, as these are the metrics used to define how
easily the module will decompose [3]. This is done using an
application of the Jaccard Index, which is as followed:

Jaccard(U, V) =
|U ∩ V |
|U ∪ V |

(1)

Coupling is calculated by averaging of the Jaccard Indexes
of every neuron in the module. A value of 1 would indicate
the neurons are the same, with a 0 indicating complete unique-
ness. Cohesion is calculated by averaging the Jaccard Indexes
between modules. Gradient descent is a method of optimizing
both of these metrics as the module trains for its accuracy as
well. This method calls for gradual directional steps towards
a desired output. Should the modularization changes move
in an undesired direction, the DNN model will revert to the
previous state [3]. With this step finished, modularization can
now occur, similarly to the methods explained earlier.

III. METHODOLOGY

With preliminaries addressed, the project that is this pa-
per’s focus is the use of mutation analysis to assist in the
decomposition of DNN models. The name of this application
is INCITE, named after its method of inciting neurons using
mutations [5].

A. Density-based Spatial Clustering of Applications with
Noise (DBSCAN)

To execute this process, it is a necessity to implement the
concept of density-based spatial clustering of applications with
noise (DBSCAN). DBSCAN is a method of data clustering
by grouping data points together by their metric proximity
and relative majority, excluding outliers or small groupings of
outliers.

The desire to apply DBSCAN comes from the aspiration to
quicken the processing time of the technique. Before starting,
INCITE used the top-performing neurons as the basis for the
mutants. Instead, using the top-performing cluster of neurons,
and ignoring outliers, should result in an accelerated increase
in performance. This approach focuses on improving the
greater performance of the larger DNN model, rather than
the outliers. Implementing DBSCAN into Python involves the
importing of scikit-learn, which is a Python module already
used within the program. A problem arose, however, when
implementing DBSCAN. The outlying neurons’ performance
vastly trumped the performance of the other neurons. The
result is the clustering of all remaining neurons except for the
outliers, which is not ideal. The settings required to guarantee
the removal of outliers resulted in fewer clusters than desired.
It became apparent that data normalization would become a
necessity.

B. Data Normalization

Data normalization involves the redefining of metrics in
order to better organize results. This process is crucial when

attempting to analyze data. Because of the existence of large
outliers, the data must be normalized so that it can be better
analyzed. The technique used in this paper is the normalize
function, which like DBSCAN, is also included in scikit-learn.
Since the performance of neurons is already organized in an
array, this method of normalization is preferred. Afterwards,
the array of performance scores is now easier to analyze, and
DBSCAN now clusters that data more appropriately.

IV. RESULTS

The result of the decomposition of DNN models using mu-
tation analysis shows that the loss of accuracy is minimal. This
outcome is true for simple DNN models, CNN models, and
regressions models. Additionally, this modularization method
achieves the high coupling, low cohesion principles previously
discussed across the three model varieties as well [5].

Prior to data normalization, the contribution scores of a
neuron layer were 3410, 1238, 809, 303, and 248. Attempting
to apply a reasonable DBSCAN function to these scores would
always result in the inclusion of the final four contribution
scores in one cluster. Considering the distance from neuron
2 to neuron 5, this is not ideal. After data normalization,
the contribution scores are 0.672, 0.531, 0.476, 0.181, and
0.087. Applying a DBSCAN function to these normalized
contribution scores within a distance of 0.12 results in neuron
1 being an outlier, neurons 2 and 3 in one cluster, and neurons
4 and 5 being in a different cluster. This outcome is a far more
reasonable clustering of the data.

V. CHALLENGES

Throughout the course of this project, many challenges
have appeared. Research into the topic of DNN decomposition
is newly emerging and intellectually challenging. Materials
regarding the subject are dense and far outside the scope
of prior knowledge and personal educational findings. Re-
quired programming skills also became an obvious area of
insufficiency. The modification of INCITE to select the top-
performing cluster of neurons was not achieved. The modules
used within Python, though a familiar programming language,
are largely untested by an inexperienced author, resulting in
a halting of crucial progress. Supplementation of experience
and knowledge would result in a more complete project.

VI. CONCLUSION

This paper attempts to show the myriad of ways the
modularization of DNN models is possible. It also seeks
to identify the interworkings of these systems. The specific
method by which this paper achieved this objective is via
mutation analysis, which is also a concept in its infancy, as
is modularization while training and DNN decomposition as
a whole. Previously a concept reserved for software, DNNs
will have to find efficient manners of modularization should
their presence continue its current expansion velocity. The
computational and resource cost will be too great should
the unfortunate yet inevitable bugs and inaccuracies occur.
Applications of DNNs, such as self-driving cars, medical

analysis, and criminal investigation techniques cannot afford
the delays in patches should full retraining of models be
required. Even for DNN purposes with less pressing aims and
fewer fatal consequences, economic concerns are still valid,
and the desire to reduce such costs is no less practical. To
this end, DNN decomposition will need to improve; though,
having observed the rapid advancements in the field, it is with
unwavering certainty that those researching and developing
DNN modularization will produce stellar achievements.

ACKNOWLEDGEMENTS

This work has been supported by the Distributed Research
Experiences for Undergraduates (DREU) program by CRA.
I would like to thank Dr. Ghanbari for his guidance and
mentorship. All errors are mine.

REFERENCES

[1] Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural
Network into Modules. In Proceedings of The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2020). ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/1122445.1122456

[2] Rangeet Pan and Hridesh Rajan. 2022. Decomposing convolutional
neural networks into reusable and replaceable modules. In Proceedings
of the 44th International Conference on Software Engineering (ICSE
’22). Association for Computing Machinery, New York, NY, USA,
524–535. https://doi.org/10.1145/3510003.3510051

[3] B. Qi, H. Sun, H. Zhang, R. Zhao and X. Gao, ”Modularizing
While Training: A New Paradigm for Modularizing DNN Mod-
els,” in 2024 IEEE/ACM 46th International Conference on Soft-
ware Engineering (ICSE), Lisbon, Portugal, 2024 pp. 353-364. doi:
10.1145/3597503.3608135

[4] L. Ma, et al., ”DeepMutation: Mutation Testing of Deep Learning
Systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE), Memphis, TN, USA, 2018 pp. 100-
111. doi: 10.1109/ISSRE.2018.00021

[5] A. Ghanbari, ”Decomposition of Deep Neural Networks into Mod-
ules via Mutation Analysis,” Symposium on Software Testing and
Analysis (ISSTA 2024). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650212.3680390

